If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2-10h-18=0
a = 1; b = -10; c = -18;
Δ = b2-4ac
Δ = -102-4·1·(-18)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{43}}{2*1}=\frac{10-2\sqrt{43}}{2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{43}}{2*1}=\frac{10+2\sqrt{43}}{2} $
| (x.2x)+4x+1=0 | | 14x-6=3x-7 | | 7x2–16x+9=0 | | -5=m/9 | | 21y-34=180 | | -2z=-20 | | 3/8x-8=-4 | | -5y-2y=32 | | -4x+11-3x=-17 | | 7a=4(2a+11) | | 2.4(x-6=-5.6x+8 | | .12y+.09(y+7000)=2310 | | 9n+3=15 | | 1/2(d-3)-4/1(5d-5)=5/12 | | -6(v+4)+4v+7=6v+11 | | 6v-12=-12 | | 25=30-x/3 | | 2^(x-3)=15 | | x2-1x-10=0 | | 8n+7=-7 | | (3x+1)^(2)=-2x | | 8n+7=7 | | 7=w+15 | | 3x-23/2=-4 | | 15-4x=3(3x+1) | | 7i+7=5i+24 | | 9y-18=9 | | X=(3x+8) | | 7y-29=41 | | 2^8x=16 | | 75=30-x | | 6n+9=0 |